You are here

Understanding Speaker Specifications

What To Look For When Choosing Monitors
By Andrew Goldberg

Choosing Monitors

We cut through the hype to show you what really matters in speaker specifications.

It's often stated that the quality of a speaker is subjective, but studio monitors are measurement instruments: they measure the sound of your audio material, be it speech, music or sound effects. Measurement instruments should report exactly what they're measuring. If they report a value that's too high or low, decisions based on those values will be wrong or inappropriate. Consider a voltmeter that's used to measure a 9V battery. If the result is less than 8V, you have a dead battery, can put it in the recycling, and get a new one. Just below 9V tells you the battery needs replacing now or very soon. Just over 9V gives you confidence that you can continue using the battery for some time. (If the reading is 12V, the meter is broken or you've discovered a new branch of physics!)

Peter Walker, of Quad fame, is often quoted as saying "If you do not like the output, take a look at the input," and he's right: if you don't like what a well-installed, good-quality monitor tells you is in your audio signal, it's your audio material that needs looking at.

Of course, Mr Walker's statement assumes that the thing in the middle is doing its job properly. So how do we know if a loudspeaker is telling us the truth? The answer has two parts: first, examination of published specifications, and second, the installation of the speaker into the room. In this article, I'll focus on the first part. (The second, which necessarily includes the acoustical treatment of the room, must not be overlooked but has been discussed in dozens of previous SOS articles.) Note that real graphs are used to illustrate points in the text, and in some cases these refer to specific brands or models, but that's simply to ensure I'm using real-world examples; I don't intend these (or any pictures) to promote specific brands or products over each other. Rather, I want to arm you with the information and understanding required to make good choices for yourself.

Frequency Response

Leaving aside cabinet dimensions and weight, the 'frequency response' is probably the most quoted loudspeaker specification. Unfortunately, it's open to abuse, and what's quoted in marketing material can often mislead. The target response is, of course, a flat line within the 'pass band' (the range of frequencies the loudspeaker is intended to reproduce) at the listening position. No matter how flat the speaker is in anechoic conditions (where there is, by definition, no room effect), the room will affect the response of both the speaker itself and the sound during its path from speaker to listener. Unlike in live-sound and domestic environments, a recording studio's listening position can be well defined. But the speaker designer cannot be sure about many other influencing factors — the listening distance, for example, or the presence of and distance to nearby boundaries (walls, ceiling, floor, mixing desk and so on), acoustic treatment and more.

Acoustical loading from walls and other surfaces can reinforce a speaker's low-frequency response. Most studio monitors therefore offer simple EQ facilities that allow you to adjust the LF response to suit the speaker placement.Acoustical loading from walls and other surfaces can reinforce a speaker's low-frequency response. Most studio monitors therefore offer simple EQ facilities that allow you to adjust the LF response to suit the speaker placement.Acoustical loading from walls and desks that causes a boost in the low-end frequency response can be compensated for with relatively simple low-frequency filters — you'll find these on many speakers at a range of budgets. It's also possible for the designer deliberately to aim for a non-flat anechoic target response. This has usually been done in the past on the assumption that something will happen in the room to recover a flat response. For example, some designers have scooped out the low-mid range, knowing that a desk beneath or in front of them will fill it back in again. This tactic doesn't work if there's no desk (one is left with a speaker response suffering from a scooped low-mid), and with today's active products and user-controlled filters, this shaped-response design ideology is unnecessary.

While corrective EQ can combat changes in the frequency response due to acoustical loading, removal of other problems born of reflections requires a more complex solution such as Trinnov's ST2 Pro.While corrective EQ can combat changes in the frequency response due to acoustical loading, removal of other problems born of reflections requires a more complex solution such as Trinnov's ST2 Pro.Reflections cannot be equalised out unless one uses sophisticated echo-cancellation techniques, which are complex to design and expensive to implement. Trinnov make such a system (the SOS review of their ST2 Pro discusses the technology: https://sosm.ag/trinnov-st2-pro), but even with access to such wonders it's better to at least try to acoustically treat the reflecting surfaces, to damp the reflection before employing any signal processing.

What did I mean when I said that the published frequency-response numbers can be misleading? Well, one sees examples like these, which are modelled on those from real manufacturers' websites (the numbers have been changed to protect the guilty!):

40Hz-25kHz. This tells us nothing, because the levels are not specified. Is the response at these frequencies -3dB, -6dB, or even as much as -10dB — or what?

50Hz-22kHz (-6dB). Though slightly better, this is still not great. We know the upper and lower frequencies where the sound pressure is halved. (Often -3dB is quoted, which is half the sound power, but the information limitation is basically the same.) Yet we have no idea what happens between the two specified frequencies.

60Hz-20kHz (±2dB). This is better, as we know that the response between the two frequencies lies within a 4dB window. But we still don't know if the window frames a downward or upward sloped response, a smiley curve, or a ripply, wavy shape.

In short, the only pattern we can deduce from these numbers is that the wider the dB limits, the wider the frequency-response values will be, and the better looking the specifications will seem. You can understand the appeal of such figures to a marketing team, then, but sadly they're not much help to the customer! A more complete, meaningful set of specifications for a single loudspeaker would look like this:

  • Anechoic frequency response ±6dB: 40Hz–25kHz
  • Anechoic frequency response ±3dB: 45Hz–22kHz
  • Anechoic linearity deviation between 100Hz and 10kHz: ±1.5dB

The first two specifications show the frequency extension at high and low frequencies, and the last shows how flat the loudspeaker is in the middle (ie. away from the frequency extremes). Better still would be publication of the original data these numbers are (or should be!) based on — the anechoic frequency-response curve.

Graph 1: Anechoic response (orange) and ideal response (green).Graph 1: Anechoic response (orange) and ideal response (green).Graph 1 is an example where we can properly see a very flat anechoic response (orange line). Added to the graph is the ideal loudspeaker response (green line). Inside the pass band, the level that's output should be the same at all frequencies, and outside the pass band there should be no sound at all. Incidentally, the low-frequency roll-off slope is a function of the cabinet design: 12dB/octave for a sealed cabinet and 24dB/octave for a vented cabinet. This...

You are reading one of the locked Subscriber-only articles from our latest 5 issues.

You've read 20% of this article for free, so to continue reading...

  • Buy & Download this single article in PDF format £1.00 GBP$1.49 USD
    For less than the price of a coffee, buy now and immediately download to your computer or smartphone.
     
  • Buy & Download the Full Issue PDF 
    Our 'replica SOS magazine' for smartphone/tablet/desktop. More info...
     
  • Buy a DIGITAL subscription (or Print + Digital)
    Unlock ALL web articles instantly! Visit our ShopStore.
Published February 2020